
E.G.M. Petrakis Indexing 1

Indexing
Extract specific information from
data and access data through it
attributes, attribute vectors
Two step retrieval:

1) hypothesis: search through the index
returns all qualifying documents plus some
false alarms

2) verification: the answer is examined to
eliminate false alarms

E.G.M. Petrakis Indexing 2

Database Indexing Methods

Indexing based on
primary key: single attribute, no duplicates
secondary keys: one or more attributes

duplicates are allowed
indexing in M-dimensional feature spaces

Data and queries are vectors
retrieval: two step search approach

E.G.M. Petrakis Indexing 3

Primary Key Indexing
Dynamic indexing: the file grows or shrinks to
adapt to the volume of data

good space utilization and good performance
Methods:

B-trees and variants (B+-trees, B*-trees)
Hashing and variants (linear hashing, spiral etc.)
hashing is faster, B-trees preserve order of keys

B-trees, hashing are the industry work-horses

E.G.M. Petrakis Indexing 4

Secondary Key Indexing

Much interest in multimedia
signals are represented by feature vectors
feature extraction computes feature
vectors from signals

The index organizes the feature space
so that it can answer queries on any
attribute

E.G.M. Petrakis Indexing 5

Query Types
Exact match: all attribute values are specified

name = “smith” and salary = 30,000
Partial match: not all attribute values are specified

name=“smith” and salary = *
Range queries: range of attribute values are specified

name=“smith” and (20,000 <= salary <= 30,000)
find images within distance T

Nearest Neighbor (NN): find the K best matches
find the 10 most similar images

Spatial join queries: find pairs of attributes
satisfying a common constraint

find cities within 10km from a lake

E.G.M. Petrakis Indexing 6

Index Structures
Inverted files: each attribute points to
a list of documents
Point Access Methods (PAMs): data are
points in an M-dimensional space

Grid file, k-d-tree, k-d-B-tree, hB-tree, ...
Spatial Access Methods (SAMs): data
are lines, rectangles, other geometric
objects in high dimensional spaces

R-trees and variants, space filling curves

E.G.M. Petrakis Indexing 7

Inverted Files
Maintain a posting list per attribute
A posting list points to records that have the
same value
A directory for each distinct attribute value

sorted
organized as a B-tree or as a hash table

Boolean queries are resolved by merging
posting lists

E.G.M. Petrakis Indexing 8

Inverted file with B-tree

E.G.M. Petrakis Indexing 9

Grid File
Imposes a grid on the address space

the grid adapts to the data density by
introducing more divisions on areas with
high data density
grid cells correspond to disk pages
two or more cells may share a page
the cuts are allowed on predefined points
(e.g., 1/2, 1/4, 3/4) on each axis
M-dim. directory for M-dim. data
directory: one entry for each cell and a
pointer to a disk page

E.G.M. Petrakis Indexing 10

2D Grid on 2D Space

E.G.M. Petrakis Indexing 11

Comment on Grid File

Pros:
two disk accesses for exact match
symmetric with respect to the attributes
adapts to non-uniform data distributions
good for low dimensionality spaces

Cons:
not good for correlated attributes
large directory for many dimensions

E.G.M. Petrakis Indexing 12

k-d-trees

Divides the address space into disjoint
regions through cuts on alternating
dimensions (attributes)

binary tree
A different attribute as discriminator at
each level
the left sub-tree contains records with
smaller values of that attribute
the right sub-tree keeps records with
greater values

E.G.M. Petrakis Indexing 13

k-d-tree with 3 Records, 2
Attributes

a) the divisions of the address space
b) the tree

E.G.M. Petrakis Indexing 14

Comments on k-d-tree

Pros:
elegant and intuitive algorithms
good performance thanks to the efficient
pruning of the search space
Good for exact, range and nearest-
neighbor queries

Cons:
main memory access method

E.G.M. Petrakis Indexing 15

Extensions of k-d-trees
k-d-B-trees [Robinson 81]:

divides the address space into m intervals
for every node (not just 2 as the k-d-tree)
Always balanced, disk access method

hB-tree [Lomet & Salzberg 90]:
divides the address space into regions
the regions may have holes
nodes (disk pages) are organized as B-trees
disk access method

E.G.M. Petrakis Indexing 16

Spatial Access Methods (SAMs)

File structures that handle points, lines,
rectangles, general geometric objects in high
dimensional spaces
Two classes of SAMs:

space filling curves: Z, Gray, Hilbert curves
tree structures: R-trees and its variants

Common query types:
point queries: find the nearest rectangles
containing it
window queries: find intersecting rectangles

E.G.M. Petrakis Indexing 17

Space Filling Curves

Mapping of multi-dimensional space to
one dimension

visit all data points in space in some order
this order defines an 1D sequence of points
points which are close together in the
multi-dimensional space must be assigned
similar values in the 1D sequence
A B+-tree for indexing

Space Traversal

Visit the pixels in row-wise order
Tends to create large gaps between
neighboring points

Better ideas: Z-curves, Hilbert curves

E.G.M. Petrakis Indexing 18

E.G.M. Petrakis Indexing 19

Two Common Curves

Z-curve

Hilbert

E.G.M. Petrakis Indexing 20

Creating Indices

Bit interleaving:
Assign k-bits per axis (2k values)
Take the x, y, … coordinates of each pixel
in binary form
Shuffle bits in some order
Each pixel takes the value of the resulting
binary number

The order with which the pixels are
taken produces a mapping to 1D space

E.G.M. Petrakis Indexing 21

Z-Order
Shuffle bits from each of the M dimensions in
a round-robin fashion

2D space: “12” take bit from x coordinate first,
then bit from y coordinate

Visiting all pixels in ascending Z-value order
creates a self-similar trail of N shapes

the trail can be defined on different size grids

E.G.M. Petrakis Indexing 22

Pixel A=(0,3)=(00,11): shuffle(1212,00,11)=0101=5

k=2 bits
per pixel

E.G.M. Petrakis Indexing 23

Z Regions
A region breaks into one or more pieces each of which
is described by a Z-value

region C breaks into 2 pixels: with Z values 0010=2 and
1000=8
region B consists of 4 pixels with common prefix 11 which is
taken to be Z-value of the C region

C B

E.G.M. Petrakis Indexing 24

Hilbert Curve

Better clustering than Z-ordering
Less abrupt jumps
better distance preserving properties

E.G.M. Petrakis Indexing 25

Tree SAMs

Quadtree: space driven access method
good for main memory
Linear Quadtree: combines Z-ordering with
quadtrees, good for main memory and disk

R-tree: data driven access method
good for main memory and disk
R+-tree, R*-tree, SS-tree, SR-tree etc.

E.G.M. Petrakis Indexing 26

Quadtree
Recursive decomposition of space into
quadrants

decompose until a criterion is satisfied
the index is a quaternary tree
each node contains the rectangles it overlaps

E.G.M. Petrakis Indexing 27

Linear Quadtree

Good for disk storage
nodes: NW, NE, SW, SE
0: S or W,
1: N or E
each edge has a 2-bit label (e.g., NW: 10)
Z-value of a node: concatenate Z-values
from root (e.g., shaded rectangle: 0001)
Z-values are inserted into a B+-tree

NW
1 0

NE
1 1

SW
0 0

SE
0 1

E.G.M. Petrakis Indexing 28

shaded rectangle: 3 blocks
approximation contains
the shaded region

E.G.M. Petrakis Indexing 29

R-tree [Guttman 84]
The most successful SAM
Balanced, as a B+ tree for many dimensions
Objects are approximated by MBRs
Non-leaf nodes contain entries (ptr, R)

ptr: pointer to children node
R: MBR that covers all rectangles in child node

leaf-nodes contain entries (obj-id, R)
obj-id: pointer to object
R: MBR that covers all objects in child node

parent nodes are allowed to overlap

E.G.M. Petrakis Indexing 30

rectangles organized
as an R-tree
(fanout: 3)

R-tree leaf nodes
correspond to disk pages

E.G.M. Petrakis Indexing 31

Algorithms for R-trees
Nodes overlap leads to searching along
multiple paths and recursive algorithms
Insertion: traverse tree, put in suitable node

split if necessary
R*-tree: differ splitting
changes propagate upwards
R-tree is always balanced

Range queries: traverse tree, compare query
with node MBR, prune non-intersecting nodes
NN queries: more complex, branch and bound
technique [Roussopoulos 95]

E.G.M. Petrakis Indexing 32

R-trees and Variants
R*-tree: differ splits to achieve better
utilization in a better structured R-tree

when a node overflows, some of its children are
deleted and reinserted
outperforms R-tree by 30% (?)

R+-tree: nodes are not allowed to overlap
no good space utilization, larger trees, rectangles
can be duplicated, complex algorithms
outperform R-trees for point queries: a single path
is followed from the root a leaf
R-trees outperform R+-trees for range queries

E.G.M. Petrakis Indexing 33

R+-tree, objects 8,12 are referenced twice

E.G.M. Petrakis Indexing 34

Recent R-tree Variants
Different space decomposition schemes

e.g., bounding spheres (BS) instead of rectangles
BSs reduce overlapping of MBRs
minimum unused space inside BSs
BSs divide space into short-diameter regions
BSs tend to have larger volumes than MBRs and
contain more points
less flexible: only radius varies instead of length,
width
more complex algorithms

E.G.M. Petrakis Indexing 35

SS-tree

Similar to R*-tree
uses spheres instead of rectangles
good performance for point queries

SR-tree combines the structure of the
R*-tree and of the SS-tree

A bounding region is defined by the
intersection of a sphere and an MBR
good for NN-queries

E.G.M. Petrakis Indexing 36

Metric Trees

Consider only relative distances of
objects rather than their absolute
positions in space for indexing

Require that distance d is a metric
d(a,b) = (b,a)
d(a,b) >= 0 for a < > 0 and d(a,b) = for a = b
d(a,c) <= d(a,b) + d(b,c)

triangle inequality for pruning the search
space

E.G.M. Petrakis Indexing 37

VP-Tree [Yanilos 93]
Divides the space using a distance from
a selected vantage point

root: entire space (all database objects)
left subtree: points with the less distance
right subtree: points with greater distance
recursive processing at each node
a binary tree is formed
logarithmic search time
static, good for main memory
m-vp-tree: multiple vantage points

E.G.M. Petrakis Indexing 38

M-Tree [Ciaccia 97]
Combines SAMs and metric trees
Balanced tree, good for disk
Routing objects: internal nodes
Leaf nodes: actual objects
Routing objects point to covering sub-trees
Objects in a covering sub-tree are within
distance r from the routing object
A routing object is associated with a distance
p from its parent object

E.G.M. Petrakis Indexing 39

Performance
Dimensionality curse: as dimensionality grows
the performance drops

even worst than sequential scanning
R-trees and variants: up to 20-30 dims for
point objects, 20 dims for rectangles

more dimensions, larger space for MBRs, fanout
decreases, taller and slower tree

Fractals: good performance for 2-3 dims
M-trees: good performance for up to 10 dims

E.G.M. Petrakis Indexing 40

References
John Louis Bentley, Jerome H. Friedman, “Data Structures for Range
Searching”. Computing Surveys, Vol. 11, No 4, December 1979
Antonin Guttman, “R-trees: A Dynamic index Structure for Spatial
Searching”. Proceedings ACM SIGMOD International Conference on
the Management of Data, 1984.
Timos Sellis, Nick Roussopoulos and Christos Faloutsos, “The R+-
Tree: A Dynamic Index for Multi-Dimensional Objects”. Proceedings
of the 13th VLDB Conference, Brighton 1987.
Norbert Beckmann, Hans-Peter Kriegel, “The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles”. Proceedings
ACM SIGMOD International Conference on the Management of Data,
Atlantic City, NJ, May 1990.
David Lomet, “A Review of Recent Work on Multi-attribute Access
Methods”. SIGMOD RECORD, Vol. 21, No 3,September 1992.
Peter N. Yianilos, “Data Structures and Algorithms for the Nearest
Neighbor Search in General Metric Spaces”. Proceedings of the 4th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
Austin-Texas, Jan. 1993.

E.G.M. Petrakis Indexing 41

References
Paolo Ciaccia, Marco Patella, Pavel Zezula, “M-tree: An Efficient
Method for Similarity Search in Metric Space”. Proceedings of
the 23rd VLDB Conference, Athens Greece, 1997.
Volker Gaede, Oliver Gunther, “Multidimensional Access
Methods”. ACM Computing Surveys, Vol.30, No 2, June 1998.
Joseph M. Hellerstein, Avi Pfeffer, “The RD-tree: An Index
Structure for sets”. University of Wisconsin, Computer Science
Technical report 1252, November 1994.
N. Katayama and S. Satoh. The SR-tree: “An Index Structure
for High-Dimensional Nearest Neighbor Queries, In Proc. of
ACM SIGMOD, pages 369–380, 1997.
C. Faloutsos and S. Roseman: “Fractals for Secondary Key
Retrieval”, In Proc. ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pp. 247-252,
Philadelphia, Pennsylvania, March 29-31, 1989

	Indexing
	Database Indexing Methods
	Primary Key Indexing
	Secondary Key Indexing
	Query Types
	Index Structures
	Inverted Files
	Inverted file with B-tree
	Grid File
	2D Grid on 2D Space
	Comment on Grid File
	k-d-trees
	k-d-tree with 3 Records, 2 Attributes
	Comments on k-d-tree
	Extensions of k-d-trees
	Spatial Access Methods (SAMs)
	Space Filling Curves
	Space Traversal
	Two Common Curves
	Creating Indices
	Z-Order
	Slide Number 22
	Z Regions
	Hilbert Curve
	Tree SAMs
	Quadtree
	Linear Quadtree
	Slide Number 28
	R-tree [Guttman 84]
	Slide Number 30
	Algorithms for R-trees
	R-trees and Variants
	Slide Number 33
	Recent R-tree Variants
	SS-tree
	Metric Trees
	VP-Tree [Yanilos 93]
	M-Tree [Ciaccia 97]
	Performance
	References
	References

