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Indexing
Extract specific information from 
data and access data through it
attributes, attribute vectors
Two step retrieval:

1) hypothesis: search through the index 
returns all qualifying documents plus some 
false alarms

2) verification: the answer is examined to 
eliminate false alarms
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Database Indexing Methods

Indexing based on 
primary key: single attribute, no duplicates
secondary keys: one or more attributes  

duplicates are allowed 
indexing in M-dimensional feature spaces

Data and queries are vectors 
retrieval: two step search approach
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Primary Key Indexing
Dynamic indexing: the file grows or shrinks to 
adapt to the volume of data

good space utilization and good performance
Methods:

B-trees and variants (B+-trees, B*-trees)
Hashing and variants (linear hashing, spiral etc.)
hashing is faster, B-trees preserve order of keys

B-trees, hashing are the industry work-horses
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Secondary Key Indexing

Much interest in multimedia
signals are represented by feature vectors
feature extraction computes feature 
vectors from signals

The index organizes the feature space 
so that it can answer queries on any 
attribute
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Query Types
Exact match: all attribute values are specified

name = “smith” and salary = 30,000
Partial match: not all attribute values are specified

name=“smith” and salary = *
Range queries: range of attribute values are specified

name=“smith” and (20,000 <= salary <= 30,000)
find images within distance T 

Nearest Neighbor (NN): find the K best matches
find the 10 most similar images

Spatial join queries: find pairs of attributes 
satisfying a common constraint

find cities within 10km from a lake 
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Index Structures
Inverted files: each attribute points to 
a list of documents
Point Access Methods (PAMs): data are 
points in an M-dimensional space

Grid file, k-d-tree, k-d-B-tree, hB-tree, ...
Spatial Access Methods (SAMs): data 
are lines, rectangles, other geometric 
objects in high dimensional spaces

R-trees and variants, space filling curves
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Inverted Files
Maintain a posting list per attribute
A posting list points to records that have the 
same value
A directory for each distinct attribute value 

sorted
organized as a B-tree or as a hash table

Boolean queries are resolved by merging 
posting lists
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Inverted file with B-tree
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Grid File
Imposes a grid on the address space

the grid adapts to the data density by 
introducing more divisions on areas with 
high data density
grid cells correspond to disk pages 
two or more cells may share a page
the cuts are allowed on predefined points 
(e.g., 1/2, 1/4, 3/4) on each axis 
M-dim. directory for M-dim. data 
directory: one entry for each cell and a 
pointer to a disk page
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2D Grid on 2D Space
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Comment on Grid File

Pros: 
two disk accesses for exact match
symmetric with respect to the attributes
adapts to non-uniform data distributions
good for low dimensionality spaces

Cons: 
not good for correlated attributes
large directory for many dimensions
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k-d-trees

Divides the address space into disjoint 
regions through cuts on alternating 
dimensions (attributes)

binary tree
A different attribute as discriminator at 
each level
the left sub-tree contains records with 
smaller values of that attribute
the right sub-tree keeps records with 
greater values
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k-d-tree with 3 Records, 2 
Attributes

a) the divisions of the address space
b) the tree
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Comments on k-d-tree

Pros:
elegant and intuitive algorithms
good performance thanks to the efficient 
pruning of the search space
Good for exact, range and nearest-
neighbor queries

Cons: 
main memory access method
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Extensions of k-d-trees
k-d-B-trees [Robinson 81]: 

divides the address space into m intervals 
for every node  (not just 2 as the k-d-tree)
Always balanced, disk access method

hB-tree [Lomet & Salzberg 90]:
divides the address space into regions 
the regions may have holes
nodes (disk pages) are organized as B-trees
disk access method  
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Spatial Access Methods (SAMs)

File structures that handle points, lines, 
rectangles, general geometric objects in high 
dimensional spaces
Two classes of SAMs:

space filling curves: Z, Gray, Hilbert curves
tree structures: R-trees and its variants 

Common query types:
point queries: find the nearest rectangles 
containing it
window queries: find intersecting rectangles
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Space Filling Curves

Mapping of multi-dimensional space to 
one dimension 

visit all data points in space in some order
this order defines an 1D sequence of points
points which are close together in the 
multi-dimensional space must be assigned 
similar values in the 1D sequence
A B+-tree for indexing



Space Traversal

Visit the pixels in row-wise order
Tends to create large gaps between 
neighboring points

Better ideas: Z-curves, Hilbert curves
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Two Common Curves

Z-curve

Hilbert
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Creating Indices

Bit interleaving:
Assign k-bits per axis (2k values)
Take the x, y, … coordinates of each pixel 
in binary form
Shuffle bits in some order 
Each pixel takes the value of the resulting 
binary number

The order with which the pixels are 
taken produces a mapping to 1D space
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Z-Order
Shuffle bits from each of the M dimensions in 
a round-robin fashion

2D space: “12” take bit from x coordinate first, 
then bit from y coordinate

Visiting all pixels in ascending Z-value order 
creates a self-similar trail of N shapes 

the trail can be defined on different size grids
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Pixel A=(0,3)=(00,11): shuffle(1212,00,11)=0101=5

k=2 bits 
per pixel



E.G.M. Petrakis Indexing 23

Z Regions
A region breaks into one or more pieces each of which 
is described by a Z-value

region C breaks into 2 pixels: with Z values 0010=2 and 
1000=8
region B consists of 4 pixels with common prefix 11 which is 
taken to be Z-value of the C region

C B
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Hilbert Curve

Better clustering than Z-ordering
Less abrupt jumps
better distance preserving properties
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Tree SAMs

Quadtree: space driven access method
good for main memory
Linear Quadtree: combines Z-ordering with 
quadtrees, good for main memory and disk

R-tree: data driven access method
good for main memory and disk
R+-tree, R*-tree, SS-tree, SR-tree etc.
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Quadtree
Recursive decomposition of space into 
quadrants

decompose until a criterion is satisfied
the index is a quaternary tree
each node contains the rectangles it overlaps
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Linear Quadtree

Good for disk storage
nodes: NW, NE, SW, SE
0: S or W, 
1: N or E
each edge has a 2-bit label (e.g., NW: 10)
Z-value of a node: concatenate Z-values 
from root (e.g., shaded rectangle: 0001)
Z-values are inserted into a B+-tree

NW 
1 0

NE 
1 1

SW
0 0

SE
0 1
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shaded rectangle: 3 blocks
approximation contains 
the shaded region
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R-tree [Guttman 84]
The most successful SAM
Balanced, as a B+ tree for many dimensions
Objects are approximated by MBRs
Non-leaf nodes contain entries (ptr, R)

ptr: pointer to children node
R: MBR that covers all rectangles in child node

leaf-nodes contain entries (obj-id, R)
obj-id: pointer to object
R: MBR that covers all objects in child node

parent nodes are allowed to overlap
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rectangles organized
as an R-tree
(fanout: 3)

R-tree leaf nodes 
correspond to disk pages
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Algorithms for R-trees
Nodes overlap leads to searching along 
multiple paths and recursive algorithms
Insertion: traverse tree, put in suitable node

split if necessary
R*-tree: differ splitting
changes propagate upwards
R-tree is always balanced

Range queries: traverse tree, compare query 
with node MBR, prune non-intersecting nodes
NN queries: more complex, branch and bound 
technique [Roussopoulos 95]
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R-trees and Variants
R*-tree: differ splits to achieve better 
utilization in a better structured R-tree  

when a node overflows, some of its children are 
deleted and reinserted
outperforms R-tree by 30% (?)

R+-tree: nodes are not allowed to overlap
no good space utilization, larger trees, rectangles 
can be duplicated, complex algorithms 
outperform R-trees for point queries: a single path
is followed from the root a leaf
R-trees outperform R+-trees for range queries 
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R+-tree, objects 8,12 are referenced twice
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Recent R-tree Variants
Different space decomposition schemes 

e.g.,  bounding spheres (BS) instead of rectangles
BSs reduce overlapping of MBRs
minimum unused space inside BSs
BSs divide space into short-diameter regions
BSs tend to have larger volumes than MBRs and 
contain more points
less flexible: only radius varies instead of length, 
width
more complex algorithms
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SS-tree

Similar to R*-tree
uses spheres instead of rectangles
good performance for point queries

SR-tree combines the structure of the 
R*-tree and of the SS-tree 

A bounding region is defined by the 
intersection of a sphere and an MBR
good for NN-queries



E.G.M. Petrakis Indexing 36

Metric Trees

Consider only relative distances of 
objects rather than their absolute 
positions in space for indexing 

Require that distance d is a metric
d(a,b) = (b,a)
d(a,b) >= 0 for a < > 0 and d(a,b) = for a = b
d(a,c) <= d(a,b) + d(b,c)

triangle inequality for pruning the search 
space
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VP-Tree [Yanilos 93]
Divides the space using a distance from 
a selected vantage point

root: entire space (all database objects)
left subtree: points with the less distance
right subtree: points with greater distance
recursive processing at each node
a binary tree is formed
logarithmic search time
static, good for main memory
m-vp-tree: multiple vantage points
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M-Tree [Ciaccia 97]
Combines SAMs and metric trees 
Balanced tree, good for disk
Routing objects: internal nodes 
Leaf nodes: actual objects
Routing objects point to covering sub-trees
Objects in a covering sub-tree are within 
distance r from the routing object
A routing object is associated with a distance 
p from its parent object 
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Performance
Dimensionality curse: as dimensionality grows 
the performance drops 

even worst than sequential scanning
R-trees and variants: up to 20-30 dims for 
point objects, 20 dims for rectangles

more dimensions, larger space for MBRs, fanout
decreases, taller and slower tree

Fractals: good performance for 2-3 dims
M-trees: good performance for up to 10 dims
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